Stereochemical Control in the Still-Wittig Rearrangement Synthesis of Cyclohexyl (Z)-Alkene Inhibitors of Pin1.
نویسندگان
چکیده
Three stereoisomeric inhibitors of Pin1: (2R,5S)-, (2S,5R)- and (2S,5S)-Ac-pSer-Ψ[(Z)CH = C]-pipecolyl(Pip)-2-(2-naphthyl)ethylamine 1, that mimic L-pSer-D-Pro, D-pSer-L-Pro, and D-pSer-D-Pro amides respectively, were synthesized by a 13-step route. The newly formed stereogenic centers in the pipecolyl ring were introduced by Luche reduction, followed by stereospecific [2,3]-Still-Wittig rearrangement. The (Z)- to (E)-alkene ratio in the rearrangements were consistently 5.5 to 1. The stereochemistry at the original Ser α-carbon controlled the stereochemistry of the Luche reduction, but it did not affect the stereochemical outcome of the rearrangement, which consistently gave the (Z)-alkene. The epimerized by-product, (2S,5S)-10, resulting from the work-up after Na/NH3 debenzylation of (2S,5R)-9, was carried on to the (2S,5S)-1 isomer. Compound (2S,5S)-10 was resynthesized from the Luche reduction by-product, (2R,3R)-3, and the stereochemistry was confirmed by comparison of the optical rotations. The IC50 values for (2R,5S)-1, (2S,5R)-1 and (2S,5S)-1 Pin1 inhibition were: 52, 85, and 140 μM, respectively.
منابع مشابه
Stereospecificity of the 1,2-Wittig Rearrangement: How Chelation Effects Influence Stereochemical Outcome
Since its discovery the rearrangement of R-metalated ethers, particularly the [2,3]-Wittig rearrangement, has been the subject of intensive mechanistic and synthetic investigations.1 Relative to the [2,3]-shift, the [1,2]-Wittig rearrangement has received relatively little publicity. Most studies of the [1,2]-Wittig have been mechanistic in origin, resulting in the widely accepted theory that t...
متن کاملCyclohexyl Ketone Inhibitors of Pin1 Dock in a Trans-Diaxial Cyclohexane Conformation
Cyclohexyl ketone substrate analogue inhibitors (Ac-pSer-Ψ[C = OCH]-Pip-tryptamine) of Pin1, the cell cycle regulatory peptidyl-prolyl isomerase (PPIase), were designed and synthesized as potential electrophilic acceptors for the Pin1 active site Cys113 nucleophile to test a proposed nucleophilic addition-isomerization mechanism. Because they were weak inhibitors, models of all three stereoisom...
متن کامل(Z)-Selective Enol Triflation of α-Alkoxyacetoaldehydes: Application to Synthesis of (Z)-Allylic Alcohols via Cross-Coupling Reaction and [1,2]-Wittig Rearrangement.
The stereoselective transformation of α-alkoxyacetoaldehydes to the corresponding (Z)-vinyl triflates was achieved by treatment with phenyl triflimide and DBU. The stereochemistry was explained by the "syn-effect," which was attributed primarily to an σ → π* interaction. The β-alkoxy vinyl triflates obtained were applied to the stereoselective synthesis of structurally diverse (Z)-allylic alcoh...
متن کاملCatalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide.
Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural pro...
متن کاملThe Wittig Reaction
This so-called Wittig reaction has a number of advantages over other olefination methods; in particular, it occurs with total positional selectivity (that is, an alkene always directly replaces a carbonyl group). By comparison, a number of other carbonyl olefination reactions often occur with double-bond rearrangement. In addition, the factors that influence Eand Z-stereoselectivity are well un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PloS one
دوره 10 10 شماره
صفحات -
تاریخ انتشار 2015